mardi 19 juin 2012

Darwinisme..Quoi..Qui..Comment??

Le terme darwinisme, fondé sur le nom du naturaliste anglais Charles Darwin (1809-1882), peut désigner :
La théorie synthétique de l'évolution constitue le cadre conceptuel le plus largement utilisé dans l'étude scientifique des processus d'évolution en biologie. Cette théorie est basée sur l'intégration de la théorie de l'hérédité mendélienne et de la génétique des populations à la théorie darwinienne1. Cette synthèse fut menée au cours des années 1930 et 1940 par R.A. Fisher, J.B.S Haldane, Sewall Wright, Theodosius Dobzhansky, Julian Huxley, Ernst Mayr, Bernhard Rensch, George Gaylord Simpson et George Ledyard Stebbins. Le nom de théorie synthétique lui fut donnée par Julian Huxley en 1942 ; cette théorie est aussi appelée néodarwinisme ou synthèse néodarwinienne pour souligner le fait qu'elle constitue une extension de la théorie originale de Charles Darwin, laquelle ignorait les mécanismes de l'hérédité génétique.

Mécanismes de l'évolution


L'évolution dépend de divers processus qui tendent à modifier la fréquence des allèles au sein de populations : mutation : dérive génétique, étranglement génétique ; flux de gènes, brassage génétique ; sélection naturelle : sélection stabilisante, directionnelle ou diversifiante ; sélection sexuelle : accouplement non aléatoire, ... ; pédomorphose ; pléiotropie : pléiotropie antagoniste ; ...
L'évolution des espèces est permise par les mutations que subissent les gènes portés par les chromosomes (constitués d'ADN). Tout être vivant possède de l'ADN (cela corrobore l'idée d'une origine commune des espèces) : cette molécule est constituée de deux hélices complémentaires au niveau de leurs bases azotées. Des mutations peuvent affecter cet ADN ; elles sont provoquées par des agents mutagènes tels que rayons X, alpha, UV, ou tout simplement par la défaillance des organites responsables de la réparation de l'ADN mal transcrit ou traduit. La théorie des monstres prometteurs met le stress provoqué par des facteurs externes au premier plan de ces facteurs de mutation. Ces mutations affectent la séquence d'un gène concerné (ordre des bases nucléotides d'un gène : adénine, thymine, guanine et cytosine).
Ces mutations sont à l'origine du polymorphisme des gènes, c'est-à-dire le fait que deux versions d'un même gène (deux allèles) par exemple, sont présentes chacune dans au moins un pour cent de la population de l'espèce considérée. Ces mutations créent donc de nouveaux allèles. Mais il ne faut pas oublier le phénomène des familles multigéniques, qui a un impact très important dans l'évolution : un gène peut être dupliqué et transposé sur un autre chromosome, ainsi tous les gènes issus de ce gène ancestral font partie d'une famille multigénique.
L'environnement « encadre » ces mutations par le biais d'un phénomène appelé sélection naturelle : un gène présentant un avantage pour une espèce dans un environnement donné, permettant à ses représentants d'atteindre le mieux possible la maturité sexuelle, se répand chez les individus d'une même espèce, a contrario s'il est néfaste, il disparait. Quant aux gènes neutres, ils se répandent de façon aléatoire mais peuvent permettre de suivre l'évolution (mutation de gènes homéotiques). C'est donc l'environnement qui décide de l'évolution des espèces, celles-ci évoluant pour être toujours plus adaptées à celui-ci. Donc le caractère aléatoire des mutations de l'ADN est compensé par la sélection environnementale.
Il est donc très important de ne pas confondre évolution et innovation, ce qu'il faut retenir, c'est que l'espèce qui survit est l'espèce la mieux adaptée, pendant une certaine durée, à son environnement.
Par ailleurs, il ne faut surtout pas voir l'évolution d'un point de vue généalogique, mais phylogénétique, en effet les espèces ne descendent pas les unes des autres. Des phénomènes comme la dérive génétique font que deux populations d'une même espèce isolées pendant une très longue période de temps divergent et forment deux nouvelles espèces. Par exemple pour la lignée humaine, l'arbre phylogénétique est buissonnant : plusieurs espèces Homo et Australopithèque ont vécu simultanément. Il est aussi à noter que l'homme - contrairement aux idées reçues - ne descend pas "du singe", il a un ancêtre en commun avec lui. Notre patrimoine génétique est très proche de celui des chimpanzés, en effet les différences entre nous et celui-ci ne tiendraient qu'à la différence de quelques gènes déterminants : ils nous permettent de garder des caractères juvéniles toute notre vie, nous permettant de conserver la bipédie (le petit chimpanzé est quasi-bipède) et ils allongent la phase embryonnaire, permettant la mitose de beaucoup plus de neurones.

L'évolution résulte de l'action de plusieurs mécanismes évolutifs susceptibles de modifier la fréquence des génotypes dans une population, et par conséquent de modifier des caractères morphologiques, physiologiques ou comportementaux.
Le processus est dans tous les cas identique, dans le même ordre :
  1. Apparition d'un nouveau caractère héréditaire chez un ou quelques individus.
  2. Ce nouveau caractère se répand dans les populations, soit parce qu'il est plus adapté à l'environnement, soit à cause d'un effet de hasard.

L'apparition de caractères nouveaux et héréditaires

À chaque génération, de nouveaux variants génétiques apparaissent qui peuvent eux-mêmes transmettre leur patrimoine génétique au moment de la reproduction. Ces sources de diversité génétique sont :
On peut ajouter à cette liste une autre source de diversité génétique que sont les migrations par lesquelles le stock génétique dans une population donnée se voit renouvelé par l'arrivée d'autres membres de l'espèce porteurs d'un pool génétique différent.

La mutation

Les mutations résultent d'erreurs lors de la réplication des gènes. Ces modifications accidentelles peuvent être transmises à la descendance si elles touchent les cellules germinales, donnant naissance à des individus porteurs de gènes nouveaux, qu'aucun de leurs parents n'exprimaient.
Il existe plusieurs types de mutations (mutations ponctuelles, duplications de gènes, cassures des chromosomes, insertions ou délétions de séquences). Ces différentes modifications suffisent à expliquer la diversité génétique observée dans la nature.
Il peut s'y ajouter des mutations par échange de matériel génétique entre espèces, par différents mécanismes naturels :
  • Les bactéries sont capables d'intégrer et d'utiliser du matériel génétique (des plasmides) échangé entre deux bactéries, voire simplement présent dans le milieu. Le plus souvent cela ne conduit pas immédiatement à la définition d'une nouvelle espèce, mais le phénomène peut y contribuer et il contribue de façon importante à la sélection naturelle (par exemple, de nombreuses résistances aux antibiotiques se diffusent de cette façon).
  • Les virus peuvent servir de vecteurs de transfert de matériel génétique d'une espèce vers une autre, même très différente ; le plus souvent, l'infection virale conduit à la mort de la cellule victime, mais ce n'est pas nécessairement le cas, et la cellule cible peut participer à la reproduction (notamment pour les plantes). Un des exemples les mieux connus (et les plus utilisés par la recherche) est celui du tabac et des mosaïques.
  • Les plantes peuvent s'hybrider, conduisant à de nouvelles espèces (le blé étant un exemple typique).
Finalement, il faut mentionner les symbioses strictes, qui sont des créations de nouvelles espèces à partir d'anciennes, mais sans échange ni fusion du matériel génétique (au moins dans un premier temps). Les lichens et, selon l'hypothèse de l'endosymbiose, les organites dits « autonomes » à l'intérieur des cellules (chloroplastes, mitochondries) relèvent de ce type d'association.
Les mutations augmentent la variabilité génétique au sein d'une population. Cependant, elles sont rarement bénéfiques à l'individu qui les porte car elles peuvent détruire l'activité d'un gène essentiel.

La migration

La migration est une force de l'évolution qui augmente la variabilité génétique d'une population. De nouveaux arrivants en provenance d'une population éloignée amènent des allèles nouveaux, augmentant le pool génétique de la population d'accueil.

Le nouveau caractère se répand dans les populations

Les mécanismes de l'évolution supposent qu'un ensemble d'individus, regroupés en une espèce sur la base de caractères partagés, évoluent « conjointement. » Se pose donc le problème de la spéciation, c'est-à-dire de l'évolution des espèces au-delà des simples individus.

La dérive aléatoire

La dérive génétique concerne une petite population lorsque celle-ci est isolée du reste d'une population-mère (par exemple, par isolement sur une petite île): Certains types d'allèles tendent à disparaître, du fait de faible nombre de copies distribuées dans le pool génétique de la population au départ. Au fil des générations, la population dérive alors, acquérant des caractéristiques qui lui sont propres (ex: petitesse (mammouth nain de Sicile), gigantisme (varan de Komodo) parmi les espèces insulaires). La dérive est une force de l'évolution qui diminue la variabilité génétique au sein de la population. La dérive influe sur la fréquence des allèles. Elle ne crée en aucun cas de nouveaux allèles. Certains allèles vont être surreprésentés et d'autres sous-représentés par rapport à la population d'origine.

La sélection naturelle

La sélection naturelle diminue la variabilité génétique d'une population en enlevant certaines combinaisons génétiques défavorables dans le milieu où elles se produisent. Cependant elle peut aussi maintenir à une fréquence stable, des nouveaux variants génétiques, sans pour autant éliminer les anciennes versions. C'est le cas pour l'allèle de la drépanocytose. La sélection naturelle participe donc à l'augmentation de la diversité génétique.
Une image donnée par Richard Dawkins
Pour se trouver mille ancêtres différents, il faut remonter en arrière d'une dizaine de générations, ce qui représente quelques siècles. Or, avant le XIXe siècle, la moitié au moins des enfants mouraient en bas âge : on peut donc se demander combien de nos mille derniers ancêtres sont morts en bas âge, et la réponse n'est pas « au moins la moitié », mais bien entendu zéro, par définition. Nous ne sommes donc nullement représentatifs de l'humanité passée, car descendants d'une longue lignée de gens qui ont tous eu la chance d'amener une progéniture à l'âge de la procréation (c'est-à-dire survivre et trouver un partenaire, entre autres). Une génération peut avoir de la chance. Quand une dizaine en a coup sur coup, on peut supposer que cette « chance » correspond en fait à un ensemble de facteurs favorables qui se retrouvent de l'une à l'autre (facteurs qui ne sont pas tous génétiques : ils peuvent être culturels, religieux, économiques, etc.) Cette considération à elle seule montre que même à notre échelle, nous avons participé un tout petit peu, sur les quelques derniers siècles, à l'évolution. D'ailleurs notre simple choix d'un conjoint se révèle, comme le montre le biologiste Geoffrey Miller (The Mating Mind) obéir à des choix pas toujours conscients qu'on peut rapprocher de l'eugénisme.
Richard Dawkins pousse plus avant ses spéculations en considérant l'être vivant comme un conteneur à gènes (ce serait en tout cas le point de vue des gènes, s'ils en avaient un !). Pour lui les produits des gènes - cellules, tissus, organes, organismes, sociétés - servent aux gènes à se répliquer et à survivre. En quelque sorte, à la question : « De l'œuf ou la poule, qui est le premier ? », il répond : « La poule est le moyen trouvé par l'œuf pour faire d'autres œufs. ». Ce renversement de perspective considère l'être vivant comme la marionnette (Dawkins utilise le terme de véhicule-robot) de ses gènes.
Tout en la reconnaissant ingénieuse, Stephen Jay Gould a mis en garde contre une prise trop à la lettre de cette vision. Les gènes ne possèdent ni intention, ni projet au sens que nous donnons à ces termes. Dawkins n'a utilisé le terme qu'en tant que métaphore parlante, mais ses lecteurs n'ont pas toujours saisi la nuance.
En outre, il convient de se rappeler que les facteurs de survie ne sont pas seulement génétiques, ce qui est bien évident chez l'homme, mais ce qui est aussi le cas chez de nombreux animaux (par exemple, le chant des oiseaux, essentiel dans leur reproduction, dépend d'un apprentissage).

Devenir des mutations et caractères hérités

  • Les mutations se font toujours au hasard, et sont le plus souvent létales. La plupart du temps, elles perturbent gravement le fonctionnement de l'organisme mutant. Bien sûr, il arrive aussi qu'elles soient neutres (en modifiant un caractère sans pour autant le rendre moins fonctionnel) ou avantageuses; le cas est beaucoup plus rare, mais les mutations portent sur des millions d'individus pendant des dizaines de milliers de générations ou davantage, ce qui assure un facteur multiplicatif de 1010 à chacun de ces évènements aléatoires.
  • C'est la sélection naturelle, mise en évidence par Darwin, qui se charge de « faire le tri » entre les différentes variations. Il s'agit d'un processus purement mécanique : les mutants défavorisés auront tendance soit à mourir plus jeunes que les autres, soit à trouver plus difficilement un compagnon de reproduction. Dans un cas comme dans l'autre, ils laisseront moins (voire pas du tout) de descendants. Les mutants neutres mourront en moyenne au même âge que les autres, auront globalement autant d'enfants et pourront donc répandre leurs nouveaux caractères dans une population sous l'effet du hasard. Quant aux mutants avantagés, ils seront plus compétitifs et auront donc en moyenne plus de descendants. Une mutation qui permet de mieux échapper à un prédateur, de mieux s'orienter, de mieux séduire le sexe opposé, d'avoir plus de descendants, de mieux résister aux maladies, de mieux tirer profit d'une vie en société aura tendance à faire baisser le taux de mortalité chez les mutants ou à améliorer leur succès reproductif.
  • Génération après génération, la sélection naturelle favorise les mutations qui se transmettent le plus, dans les populations (la dérive génétique, qui se fait au hasard, permet également à quelques mutations neutres de se fixer dans le génome de l'espèce). L'adaptation des populations tend donc progressivement à s'améliorer ; l'émergence d'organes aussi complexes et aussi fonctionnels que l'œil humain ou le radar de la chauve-souris s'explique par un tel processus de sélection cumulative. En revanche, l'existence de caractères sans utilité adaptative apparente peut s'expliquer par la fixation au hasard de mutations neutres. L'hypothèse dite de « l'auto-stop », ou « hitch hiking » en anglais, explique la fixation des mutations neutres par la mutation sur le même chromosome de deux gênes, l'une étant neutre et l'autre étant positive qui se transmettront simultanément.

Métabolisme


Le métabolisme est l'ensemble des transformations moléculaires et énergétiques qui se déroulent de manière ininterrompue dans la cellule ou l'organisme vivant. C'est un processus ordonné, qui fait intervenir des processus de dégradation (catabolisme) et de synthèse organique (anabolisme). Couramment, le métabolisme est l'ensemble des dépenses énergétiques d'une personne.
On peut y distinguer le métabolisme de base et le métabolisme en activité.
L'anabolisme est le métabolisme qui permet à la cellule de synthétiser les substances indispensables à sa vie et à sa fonction. Cette synthèse s'effectue à partir des matériaux que la cellule a absorbés du milieu extérieur et de l'énergie dégagée par le catabolisme ou provenant de l'extérieur (cas de la photosynthèse).
Chez les organismes fongiques, bacteriens, vététaux ou animaux à sang-chaud ou froids, divers processus font interragir la température interne, externe et le métabolisme, avec des boucles de rétroactions plus ou moins complexes;
Plantes et levures semblent disposer d'un thermostat biologique simple ; Chez l’arabette Arabidopsis thaliana, une seule protéine (l'histone H2A.Z) joue ce rôle pour des variations de température de moins de 1 °C. Cette protéine modifie l’enroulement de l’ADN sur lui-même et contrôle ainsi l’accès à l’ADN de certaines molécules inhibant ou activant plusieurs dizaines de gènes. Cet effet « bio-thermostat » semble fréquent dans la nature, car également détecté chez des organismes aussi différents que la levure et une crucifère commune1,2. La compréhension de ces mécanismes devrait aussi aider à mieux comprendre certains effets (sur les gènes) du dérèglement climatique.